Investigation of The ALES Mathematics Questions Subjected By MATH Taxonomy: 2006 – 2013
Keywords:
ALES, MATH taxonomy, learning domain, math questionsAbstract
Purpose of this survey is to examine the distribution of 2006-2013 ALES all math questions according to learning domains, MATH (Mathematical Assessment Task Hierarchy) taxonomy categories and groups. Investigation is a qualitative, special case work. Data which are obtained from work are analyzed with a qualitative method. Investigation questions consist of 1340 questions in Quantitative - 1 and Quantitative -2 tests. Considering the findings of the survey, it is found that, the questions are mostly from algebra and numbers and process learning domain, but the distribution of questions in tests varies according to learning domains in both of the tests. It is observed that the ability about us age of the routine procedures from at least a group category is required about the distribution of questions according to MATH taxonomy groups and categories. In addition, it is determined that questions are mostly from category of B1- information transfer and B2 – adaptation to new situations. It has been identified that both the MATH taxonomy and the learning domain differ according to years in the ANOVA test.
References
Tall, D. O.,& Razali, M. R. (1993). "Diagnostic Students" difficulties in learning Mathematics. International Journal of Mathematical Education in Science and Technology , 209-222.
URL-1. (2015). (y.y.) Mart 11, 2018 tarihinde Notre-Dame de Sion Özel Fransız Lisesi: http://www.nds.k12.tr/IMG/pdf/programme_math_tr.pdf adresinden alındı
URL-2. (2018). Mart 11, 2018 tarihinde http://mufredat.meb.gov.tr/ProgramDetay .aspx?PID=329 adresinden alındı
Smith, G., Wood, L., Coupland, M., Stephenson, B., Crawford, K., & Ball, G. (2010). Constructing mathematical examinations to assess a range of knowledge and skills. International Journal of Mathematical Education in Science and Technology , 65-77.
Smith, G., Wood, L., Coupland, M., Stephenson, B., Crawford, K., & Ball, G. (1996). Constructing mathematical examinations to assess a range of knowledge and skills. Int. J. Math. Educ. Sci. Technol. , 65-77.
Smith, G.,& Wood, L. (2000). Assessment of learning in university mathematics. Int. J. Math. Educ. Sci. Technol. , 1 (31), 125-132.
Smith, G.,Petocz, P., Reid, A., & Wood, L. N. (2002). Correlation between student performance in linear algebra and categories of a taxonomy. 2nd International Conference on the Teaching of Mathematics (At the Under graduate Level).
D'Souza, S. M.,& Wood, L. (2003). Designing assessment using the MATH taxonomy. Mathematics Education Research: Innovation, Networking, Opportunity, (s. 294-301).
URL-7. (2016). Haziran 1, 2018 tarihinde http://www.osym.gov.tr/TR,774/1997-sinavlari.html adresinden alındı
URL-4. (2018). Mayıs 28, 2018 tarihinde ÖSYM: https://dokuman.osym.gov.tr/ pdfdokuman/2017/ALESSONBAHAR/ALESKILAVUZ_31102017.pdf adresinden alındı
URL-6. (2018). Mayıs 29, 2018 tarihinde GREĠSTANBUL: http://www.greistanbul. com/ adresinden alındı
Eren, S. (2018, MAYIS 29). TEORİ EĞİTİM: https://www.teoriegitim.com/gmat-graduate-management-admission-test-ucretleri-ve-tarihleri/ adresinden alınmıştır
Resmi Gazete. (2018). 8451c3e1-7975-40f1-bc81-3ca01cb288c8. Mayıs 28, 2018 tarihinde Yüksek Öğretim Kurulu: http://www.yok.gov.tr/documents/10279/23688337/lisansustu_egitim_ve_ogretim_y%C3%B6netmeligi.pdf/8451c3e1-7975-40f1-bc81-3ca01cb288c8 adresinden alındı
Karakuş, M. (2004). Lisansüstü eğitim için başvuran öğrencilerin üniversitedeki akademik başarıları ile LES puanları arasındaki ilişki. XIII. Ulusal Eğitim Bilimleri Kurultayı, (s. 6-9).
Tokat, E., & Demirtaşlı, N. Ç. (2004). Lisansüstü eğitimi giriş sınavı (LES) ve diğer kabul ölçülerinin yordama geçerliliğine ilişkin bir çalışma. Journal of Educational Sciences & Practices, 35-55.
Öztürk, N. (2010). Akademik personel ve lisansüstü eğitimi giriş sınavı puanlarının eşitlenmesi üzerine bir çalışma. Ankara: Hacettepe Üniversitesi.
Arapgirlioğlu, Z.,Zahal, O., Gürpınar, E., & Özhan, U. (2014). Lisansüstü programlara başvuran adayların ALES, yabancı dil ve mezuniyet not ortalamaları arasındaki ilişkiler. Inonu University Journal of Educational Sciences Institute, 1.
Aliustaoğlu, F.,& Tuna, A. (2016). Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı (ALES) Matematik Sorularının MATH Taksonomisine Göre Analizi. Trakya University Journal of Education, 6 (2), 126-137.
Wood, L. N.,& Smith, G. H. (2002). Perceptions of difficulty, Proceedings of 2nd International Conference on theTeaching of Mathematics, (s. 1-6). Hersonissos, Greece.
Dost, Ş., Sağlam, Y., & Uğur, A. A. (2011). Üniversitede matematik öğretiminde bilgisayar cebiri sistemlerinin kullanımı: Bir öğretim deneyi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (40), 140-151.
Kesgin, Ş. (2011). Matematik Öğretmen Adaylarının Soyut matematik Dersindeki Bilgilerinin MATH Taksonomi Çerçevesinde Analizi. ĠZMĠR: Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü.
Uğurel, I., Moralı, H. S., & Kesgin, ġ. (2012). A Comparative Analysis on the Mathematics Questions in OKS, SBS and TIMSS Under the Lens of MATH Taxonomy. DergiPark, 11 (2), 423-444.
Aliustaoğlu, F.,& Tuna, A. (2016). Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı (ALES) Matematik Sorularının MATH Taksonomisine Göre Analizi. Trakya University Journal of Education, 6 (2), 126-137.
Yıldırım, A., & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları.
Çepni, S. (2003). Fen alanları öğretim elemanlarının sınav sorularının bilişsel düzeylerinin analizi. Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 3 (1), 65-84.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Online Journal of Mathematics, Science and Technology Education
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The OJEMSTE on provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Open Access Statement:
The OJOMSTE permits any users to read, download, copy, distribute, print, search, or link to the full texts of the publications, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited.